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In this paper, we study nonlinear functionals measuring potential interactions
and L1-distance between two mild solutions for the multi-dimensional discrete
velocity Boltzmann equations when the initial data are a small perturbation of a
vacuum. We employ Bony’s dispersion estimates to show that these functionals
satisfy Lyapunov type estimates which are useful for the study of time-asymp-
totics and L1-stability of mild solutions.
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1. INTRODUCTION

The purpose of this paper is to study nonlinear functionals of the multi-
dimensional discrete velocity Boltzmann equations:

“t fi(x, t)+vi · Nx fi(x, t)=Qi(f, f )(x, t), (x, t) ¥ Rn × R+, 1 [ i [ N,
(1.1)

where fi is the density of particles with velocity vi=(v1
i ,..., vn

i ) and the
system is assumed to be strictly hyperbolic in the sense that all characteris-
tic velocities are distinct. Moreover, we assume that the collision operator
Qi(f, f ) satisfies the transversality assumption:

Qi(f, f ) — C
1 [ j, k [ N

B jk
i fj fk, B jk

i =0, if j=k and

0 < max
i, j, k

|B jk
i |=: Bg < .. (1.2)



The above transversality assumption (1.2) of Qi(f, f ) is natural in the
sense that if pre-collision velocities are equal, then post-collision velocities
should be equal to the pre-collision velocities, hence the collisions between
particles with the same velocity will not contribute to Qi(f, f ). The system
(1.1) includes standard multi-dimensional discrete velocity Boltzmann
models such as the three-dimensional Broadwell model. (7)

Discrete velocity Boltzmann equations were originally introduced with
the idea of getting simpler models for some fundamental questions such as
shock wave structures, (7) boundary layers, approximation schemes for the
full Boltzmann equation, (21, 29) analytical solutions etc. However, it does not
seem to be true that discrete velocity Boltzmann models are simpler than
the Boltzmann equation. The definition of solutions in the mild sense can
be stated as follows.

Definition 1.1. Let f=(f1,..., fN) ¥ C([0, T]; (L1(Rn) 5 L.

+(Rn))N)
be the mild solution of (1.1) with given nonnegative initial data f0 ¥

(L1(Rn) 5 (L.

+(Rn))N if and only if for all t ¥ [0, T] and a.e x ¥ Rn, f(x, t)
satisfies the following integral equation:

fi(x, t)=f0i(x − tvi)+F
t

0
Qi(f, f )(x − (t − s) vi, s) ds, i=1,..., N.

The global existence and uniqueness of mild solutions for the discrete
velocity Boltzmann models (1.1) was first obtained by Nishida and
Mimura (25) for the one-dimensional Broadwell model with small L1-data,
and this small data existence theory was generalized by Tartar, (27, 28)

Beale, (1, 2) and Bony (3) to the one-dimensional discrete velocity Boltzmann
models with large L1-data. For further references, we refer to the survey
article by Illner and Platkowski. (19) Throughout our paper, we use a sim-
plified notation for the Lp-norm:

||f(t)||Lp — C
N

i=1
||fi( · , t)||Lp(R

n).

Since the L1-norm of f in x at time t is equal to the total mass of par-
ticles at time t and is invariant in time t, the L1-norm is expected to be a
natural norm for stability analysis. In fact, L1-stability has been quite suc-
cessful in one-dimensional hyperbolic systems of conservation laws. (6, 24) In
the context of collisional kinetic equations, L1-stability for one-dimensional
discrete velocity Boltzmann models with only cross-interaction terms was
first obtained by Tartar, (28) and Ha and Tzavaras (16) proved L1-stability for
some subclass of discrete velocity Boltzmann models such as Beale’s
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models (2) containing self-interaction terms using a robust Lyapunov func-
tional approach. Moreover, this Lyapunov functional approach for
L1-stability has been applied to several one-dimensional kinetic models
with collision terms such as coagulation models (11) and a one-dimensional
Boltzmann-type equation with inelastic collisions. (14)

On the other hand, the global existence and uniqueness of mild solu-
tions for multi-dimensional discrete velocity Boltzmann models (1.1) has
been extensively studied in refs. 4, 17, 18, 22, and 23. Recently in ref. 15,
the second author succeeded in proving the L1-stability of some class of
mild solutions for (1.1):

||f(t) − f̄(t)||L1 [ G ||f0 − f̄0 ||L1. (1.3)

where G is a positive constant independent of time t.
In this paper, we consider initial data which are a small perturbation

of a trivial equilibrium state ‘‘vacuum.’’ Since we are assuming strict
hyperbolicity (M1) below, initial perturbations will be propagated into the
vacuum state along the characteristics with different speeds ‘‘(dispersion),’’
hence time-asymptotically the total density is expected to decay to the
vacuum state pointwise, and the total collisions will be decreasing so that
mild solutions will tend to the collisionless flow time-asymptotically. In
fact, these dispersive phenomena were first noticed by Tartar (27, 28) and were
employed for the study of the global existence of mild solutions to the hard-
sphere model of the Boltzmann equation in ref. 20 when a small amount of
gases expand into a vacuum.

The main novelty of this paper is to quantify the possible decay of the
potential interactions between particles with different velocities by devising
Lyapunov functionals.

Below we list the main assumptions (M) in this paper.
For a given i, we set

Li — L+
i 2 L−

i , L+
i — {(j, k): B jk

i > 0}, L−
i — {(j, k): B jk

i < 0},

N+
g — maxN

i=1 |L+
i |, N−

g — maxN
i=1 |L+

i |, Ng — maxN
i=1 |Li |.

(M1) Strict hyperbolicity: (vi ] vj if i ] j)mini ] j |vi − vj | \ vg > 0,

(M2) Transversality of Qi(f, f ): (B jk
i ] 0 S j ] k),

(M3) Smallness of initial data: BgN2Ng ||f0 ||E [ g ° 1,

where the norm || · ||E will be defined in Section 2.

Remark 1.1. (1) We do not use any conservation laws and an
entropy condition for the L1-stability analysis. However, the smallness
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assumption on the initial data is needed for the existence and stability
analysis. Moreover, the smallness of the initial data in L1(Rn) 5 L.(Rn) is
not sufficient to guarantee the uniform boundedness of mild solutions as
shown in ref. 18.

(2) For a related Lyapunov functional approach, we refer to
refs. 8–10, where the Bony Lyapunov functional (5) was generalized to the
Boltzmann equation with some truncated collision kernels.

In our paper, by Bony solution we denote the mild solutions in ref. 4;
the main purpose of this paper is to devise explicit nonlinear functionals
measuring potential interactions and L1-distance, which satisfy Lyapunov-
type estimates.

More precisely, in Section 3, we will define an interaction potential D
measuring all possible potential interactions between particles with differ-
ent velocities:

D(t) — C
1 [ i ] j [ N

F
R

n
fi(x+tvi, t) 5F

.

0
fj(x+vit+yn(vi, vj), t) dy6 dx,

where the summation is over all pairs (i, j), i ] j, and n(vi, vj) is the unit
vector in the direction of vi − vj:

n(vi, vj)=
vi − vj

|vi − vj |
, where i ] j.

Similarly, we will define a nonlinear functional H which is equivalent
to L1-distance:

H(t) — C
N

i=1
F

R
n

|fi − f̄i | (x+tvi, t)

×51+K F
.

0
C

1 [ j [ N
j ] i

(fj+f̄j)(x+tvi+yn(vi, vj), t) dy6 dx,

where K is a positive constant determined later. According to the estimates
in Proposition 2.1 of Section 2, we have

0 [ F
.

0
(fj+f̄j)(x+tvi+yn(vi, vj), t) dy [ (1+O(g))(||f0 ||E+||f̄0 ||E) ° 1,

hence it is easy to see that H is equivalent to the L1-distance:

||f(t) − f̄(t)||L1 [ H(t) [ C0 ||f(t) − f̄(t)||L1,
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where C0 is some positive constant independent of time t. The main results
of this paper are the following two theorems.

Theorem 1.1. Suppose that the main assumptions (M) hold, and let
f be the Bony solution of (1.1) corresponding to initial data f0. Then the
interaction potential D satisfies a Lyapunov-type estimate:

D(t)+
vg

2
C

1 [ i ] j [ N
F

t

0
F

R
n

(fi fj)(x, s) dx ds [ D(0).

Theorem 1.2. Suppose that the main assumptions (M) hold, and let
f and f̄ be Bony solutions of (1.1) corresponding to initial data f0 and f̄0

respectively. Then we have a quasi-Lyapunov-type estimate:

H(t)+C1 C
1 [ i ] j [ N

F
t

0
F

R
n

[|fi − f̄i | (fj+f̄j)](x, s) dx ds [ C̄1H(0),

where C1 and C̄1 are positive constants independent of t.

Remark 1.2. Notice that Theorem 1.2 also implies L1-stability (1.3).

The rest of this paper is organized as follows. In Section 2, we review
the basics of the Bony theory for the multi-dimensional discrete velocity
Boltzmann equations. Finally, in Section 3, we explicitly construct non-
linear functionals and estimate their time-evolutions.

2. PRELIMINARIES

In this section, we briefly review basic estimates of the multi-dimen-
sional discrete velocity Boltzmann model (1.1). The standard multi-dimen-
sional discrete velocity Boltzmann models are:

“t fi+vi · Nx fi= C
j, k, l

(Akl
ij fk fl − A ij

klfi fj), (x, t) ¥ Rn × R+, (2.4)

where the collision coefficients Akl
ij satisfy symmetry and micro-reversibility

conditions:

Akl
ij =A lk

ij =Akl
ji , Akl

ij =A ij
kl.

The pre-collision velocities vi, vj and post-collision velocities vk, vl satisfy
microscopic conservation laws of mass, momentum, and energy:

vi+vj=vk+vl, |vi |2+|vj |2=|vk |2+|vl |2.
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Next, we briefly review the properties of the collision operator
Qi(f, f ):

Qi(f, f ) — C
j, k, l

Akl
ij (fk fl − fi fj).

Let f: Rm
Q R be any measurable function. Then we have

“t
1C

i
f(vi) fi

2+divx
1C

i
vif(vi) fi

2= C
i, j, k, l

f(vi) Akl
ij (fk fl − fi fj).

The R.H.S. of the above equation can be rearranged:

R.H.S.=1
2 C

i, j, k, l
Akl

ij (f(vk)+f(vl) − f(vi) − f(vj)) fk fl.

For the choice of f(vi)=1, vk
i , |vi |2, we can see that the system (2.4) satis-

fies the conservation of mass, momentum, and energy:

d
dt
1 C

N

i=1
F

R
n

fi(x, t) dx, C
N

i=1
F

R
n

vi fi(x, t) dx, C
N

i=1
F

R
n

|vi |2 fi(x, t) dx2=0.

On the other hand, we multiply (2.4) by 1+log fi to get an entropy
inequality:

“t
1C

i
fi log fi

2+divx
1C

i
vi fi log fi

2

=−
1
4

C
i, j, k, l

Akl
ij log 1fk fl

fi fj

2 (fk fl − fi fj) [ 0.

Below we review estimates for the Bony solutions in refs. 4 and 15. We first
define a characteristic vector Vi ¥ Rn × R+ generated by a velocity vi ¥ Rn:

Vi=(vi, 1) ¥ Rn × R+, 1 [ i [ N.

Definition 2.1. (4, 15)

(1) P is a characteristic p-plane in Rn × R+, 1 [ p [ n+1, if and only
if it is an affine p-plane spanned by exactly p linearly independent charac-
teristic vectors Vi1

,..., Vip
.

(2) p is a p-plane of trace type in Rn, 0 [ p [ n, if and only if it is the
intersection of some (p+1)-characteristic plane P and a hyperplane
Rn × {t=T}, for some T \ 0.
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(3) For a given p-plane of trace type p, J(p) denotes the set of all
indices i such that Vi is parallel to P, for some (p+1)-characteristic plane
P with p=P 5 (Rn × {t=T}) for T \ 0.

For a measurable function f=(fi)
N
i=1, we define auxiliary functions:

For T > 0, 0 [ p [ n,

• dp(f(T)) — supi esssupi ¥ J(p){>p fi(x, T) dpx | p is a p-plane of trace
type},

• Mp+1(f(T)) — supi ] j, k supP {>P 5 (R
n × [0, T]) (|B ij

k | fi fj)(P) dpP | P is
a characteristic (p+1)-plane},

• Mp+1( f(T ), f̄(T )) — supi ] j , k supP {>P 5 (R
n × [0, T]) (|B ij

k | |fi − f̄i |
(fj+f̄j))(P) dp+1P | P is a characteristic (p+1)-plane},

Now we define the Bony norm and space as follows. For any measurable
function g,

||g||E — max
0 [ p [ n

dp(g), E — {g ¥ L1(Rn) 5 L.(Rn) : ||g||E < .}.

Notice that d0(f(t)) and dn(f(t)) are equivalent to ||f(t)||L. and ||f(t)||L1

respectively, and the space E is a closed subspace of L1(Rn) 5 L.(Rn).
Next, we quote some estimates which will be used in the estimates of

H in Section 3.

Proposition 2.1. (4, 15) Suppose that the main assumptions (M) hold,
and let f be a solution of (1.1) corresponding to initial data f0. Then we
have the following estimates. For T \ 0,

(1) supn+1
p=1 Mp(f(T)) [ C2Bg ||f0 ||2

E,
(2) supT ||f(T)||E [ (1+C3g) ||f0 ||E,

where C2 and C3 are some positive constants independent of time T.

Proposition 2.2. (15) Suppose the main assumptions (M) in Section 1
hold, and let f and f̄ be Bony solutions of (1.1) corresponding to initial
data f0 and f̄0 respectively. Then Mn+1(f(t), f̄(t)) is uniformly bounded
by the L1-distance between f0 and f̄0:

Mn+1(f(t), f̄(t)) [ C4Bg(||f0 ||E+||f̄0 ||E) ||f0 − f̄0 ||L1.

Here C4 is a positive constant independent of time t.

Remark 2.1. As shown in ref. 15, the above key estimate implies the
L1-stability of Bony solutions.
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3. NONLINEAR FUNCTIONALS

In this section, we explicitly construct nonlinear functionals measuring
potential interactions and L1-distance between smooth Bony solutions with
compact support in x, and study the time-evolution of these functionals.

3.1. Interaction Potential

In this part, we consider the Lyapunov functional D measuring
potential interactions between particles with different velocities and study
its time-variation. Let f=(fi) and f̄=(f̄i) be Bony solutions of (1.1)
corresponding to initial data f0 and f̄0 respectively. For simplicity, we use
the following simplified notations for interaction production rates:

Ld(f )(t) — C
1 [ i ] j [ N

F
R

n
(fi fj)(x, t) dx,

Ld(f, f̄ )(t) — C
1 [ i ] j [ N

F
R

n
(|fi − f̄i | (fj+f̄j))(x, t) dx.

Moreover, we denote the gain and loss terms in Qi(f, f ) as Q ±
i (f, f ),

i.e.,

Q+
i (f, f ) — C

(j, k) ¥ L
+
i

B jk
i fj fk, Q−

i (f, f ) — C
(j, k) ¥ L

−
i

B jk
i fj fk.

We first rewrite (1.1) as

“t(fi(x+tvi, t))=Qi(f, f )(x+tvi, t), (3.5)

“t(fj(x+tvi+yn(vi, vj), t))=|vi − vj | “y(f(x+tvi+yn(vi, vj), t))

+Qj(f, f )(x+tvi+yn(vi, vj), t). (3.6)

For a given time t, we consider i-particles fi located at x+tvi and
j-particles lying on the half-line x+tvi+yn(vi, vj), y \ 0. Then, after time

y

|vi − vj| elapses, i and j particles will share the same locations:

the new location of fi particles after time
y

|vi − vj |
is x+tvi+

yvi

|vi − vj |
,

the new location of fj particles after time
y

|vi − vj |
is x+tvi+

y(vi − vj)
|vi − vj |

+
yvj

|vi − vj |
,
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hence i and j particles will collide with each other as long as they are
admissible pairs in Li, i=1,..., N, defined in Section 1. Based on this
simple observation, we define an interaction potential D:

D(t)= C
1 [ i ] j [ N

Dij(t),

Dij(t) — F
R

n
fi(x+tvi, t) 5F

.

0
fj(x+tvi+yn(vi, vj), t) dy6 dx,

where summation is over all pairs (i, j), i ] j, and for Bony solutions, D is
a priori bounded by initial data:

D(t) [ C
1 [ i ] j [ N

1 sup
x

F
.

0
fj(x+tvi+yn(vi, vj), t) dy2 F

R
n

fi(x+tvi, t) dx

[ N(N − 1) d1(f(t)) dn(f(t)) [ N(N − 1) ||f0 ||2
E < ..

Next we estimate the time-evolution of D.

Lemma 3.1. Suppose that the main assumptions (M) in Section 1
hold, and let f=(fi)

N
i=1 be a smooth Bony solution of (1.1) with compact

support in x corresponding to smooth initial data f0 satisfying (M3). Then
D satisfies a Lyapunov-type estimate:

D(t)+
vg

2
F

t

0
Ld(s) ds [ D(0).

Proof. We only estimate one term Dij. The other terms can be esti-
mated similarly. We use (3.5) and (3.6) to obtain

“t(fi(x+tvi, t) fj(x+tvi+yn(vi, vj), t))

[ |vi − vj | “y[fi(x+tvi, t) fj(x+tvi+yn(vi, vj), t)]

+Q+
i (f, f )(x+tvi, t) fj(x+tvi+yn(vi, vj), t)

+fi(x+tvi, t) Q+
j (f, f )(x+tvi+yn(vi, vj), t). (3.7)
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We integrate (3.7) over Rn × [0, .) with respect to (x, y) to get

d
dt

Dij(t) [ − F
R

n
|vi − vj | (fi fj)(x+tvi, t) dx

+F
R

n
F

.

0
Q+

i (f, f )(x+tvi, t) fj(x+tvi+yn(vi, vj), t) dy dx

+F
R

n
F

.

0
Q+

j (f, f )(x+tvi+yn(vi, vj), t) fi(x+tvi, t) dy dx

= − F
R

n
|vi − vj | (fi fj)(x+tvi, t) dx+I1

ij(t)+I2
ij(t), (3.8)

where we used the fact that f vanishes at |x|=.. Next we estimate I1
ij, and

the second term I2
ij can be treated similarly using the change of variables.

I1
ij(t) [ 1 sup

x
F

.

0
fj(x+tvi+yn(vi, vj), t) dy2 F

R
n

Q+
i (f, f )(x+tvi, t) dx

[ (1+C3g) ||f0 ||E F
R

n
Q+

i (f, f )(x+tvi, t) dx, (3.9)

where we used the fact that

sup
x

F
.

0
fj(x+tvi+yn(vi, vj), t) dy [ d1(f(t)) [ (1+C3g) ||f0 ||E.

Now we use the change of variable (x Q x − yn(vi, vj)) and the same esti-
mate as I1

ij to get

I2
ij(t) [ (1+C3g) ||f0 ||E F

R
n

Q+
j (f, f )(x+tvi, t) dx. (3.10)

We combine (3.9) and (3.10) to obtain

dDij(t)
dt

[ −vg F
R

n
(fi fj)(x+tvi, t) dx

+(1+C3g) ||f0 ||E F
R

n
(Q+

i (f, f )+Q+
j (f, f ))(x+tvi, t) dx.

(3.11)
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Again in (3.11), we sum up all possible pairs (i, j) with vi ] vj to
obtain

dD(t)
dt

[ −vgLd(f)(t)

+(1+C3g) ||f0 ||E C
1 [ i ] j [ N

F
R

n
(Q+

i (f, f)+Q+
j (f, f))(x+tvi, t) dx

[ −
vg

2
L(f)(t). (3.12)

Here we used the fact that

BgN(N − 1) ||f0 || [ g ° 1.

We integrate (3.12) from t=0 to t=T to get

D(T)+
vg

2
F

T

0
Ld(t) dt [ D(0).

This completes the proof. L

Proof of Theorem 1.1. Let f be a Bony solution corresponding to
initial data f0 satisfying the smallness assumption M3. Then by the stan-
dard density argument, there exist sequences of smooth C1 initial data
{f (n)

0 }.

n=0 corresponding to smooth Bony solutions {f(n)}.

n=0 with compact
support in x such that

f (n)
0 Q f0, f (n)

Q f, as n Q . in E.

For more details, refer to ref. 4. By Lemma 3.1, we have

D (n)(t)+
vg

2
F

t

0
L (n)

d (s) ds [ D (n)(0).

Here D (n)(t) and L (n)
d (t) are the interaction potential and interaction pro-

duction rates corresponding to f (n). Then it is easy to see that

D (n)(t) QD(t), F
t

0
L (n)

d (s) ds Q F
t

0
Ld(s) ds as n Q ..

Nonlinear Functionals of Multi-D Discrete Velocity Boltzmann Equations 1025



Hence we have a Lyapunov-type estimate for a Bony solution f:

D(t)+
vg

2
F

t

0
Ld(s) ds [ D(0).

This completes the proof. L

Remark 3.1. It follows from the above estimate that

F
.

0
F

R
n

|Qi(f, f )| (x, t) dx dt [ D(0) < ..

Now we formally set

Fi.(y) — fi0(y)+F
.

0
Qi(f, f )(y+svi, s) ds;

then it is easy to see that

||Fi. ||L1 [ ||f0i ||L1+D(0), and

||fi( · +tvi, t) − Fi. ||L1 [ F
.

t
F

R
n

|Qi(f, f )| (y+svi, s) dy ds Q 0

as t Q .,

and thus fi(x, t) Q Fi.(x − tvi) in L1(Rn). Hence, the leading term in the
asymptotic response of fi is a traveling wave. Refer to refs. 4 and 5 for
further results on time-asymptotic behavior.

3.2. Nonlinear Functional for L1-Distance

In this part, we construct a nonlinear functional which is equivalent to
the L1 distance between two Bony solutions of (1.1). As in the previous
part, we first construct a nonlinear functional for smooth solutions with
compact support in x. Let f and f̄ be smooth Bony solutions of (1.1) cor-
responding to smooth data f0 and f̄0 satisfying (M3) respectively. The
equations for the difference |fi − f̄i |, fi, and f̄i are given by:

“t |fi − f̄i |+vi · Nx |fi − f̄i | [ Ji(f, f̄ ),

“t fj+vj · Nx fj=Qj(f, f ), “tf̄j+vj · Nxf̄j=Qj(f̄, f )
(3.13)
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where

Ji(f, f̄ ) — C
(j, k) ¥ Li

|B jk
i |

2
[|fj − f̄j | (fk+f̄k)+|fk − f̄k | (fj+f̄j)].

Now we define the nonlinear functional H:

L(t) — C
N

i=1
F

R
n

|fi − f̄i | (x+tvi, t) dx,

Dd(t) — C
1 [ i ] j [ N

F
R

n
|fi − f̄i | (x+tvi, t)

×5F
.

0
(fj+f̄j)(x+tvi+yn(vi, vj), t) dy6 dx,

H(t) — L(t)+KDd(t),

where K is a large positive constant which will be determined later, and
note that when either f or f̄ is zero, Dd reduces to the interaction potential
D defined in Section 3.1.

Lemma 3.2. Suppose the main assumptions (M) in Section 1 hold,
and let f and f̄ be Bony solutions corresponding to initial data f0 and f̄0

respectively. Then the above subfunctionals satisfy the following estimates:

dL(t)
dt

[ BgN Ld(f, f̄ )(t),

dDd(t)
dt

[ −
vg

2
Ld(f, f̄ )(t)+ C

1 [ i ] j [ N
F

R
n

F
.

0
|fi − f̄i | (x+tvi, t)

· [Q+
j (f, f )(x+tvi+yn(vi, vj), t)] dy dx.

Proof. By the standard density argument, it suffices to show that the
above estimates hold for smooth C1 solutions with compact support in x.

(i) The estimate for dL(t)
dt follows from (3.13) directly.

(ii) Next we estimate dDd(t)
dt : As in Lemma 3.1, by direct calculations

we have

“t(|fi − f̄i | (x+tvi, t)(fj+f̄j)(x+tvi+yn(vi, vj), t))

[ |vi − vj | “y(|fi − f̄i | (x+tvi, t)(fj+f̄j)(x+tvi+yn(vi, vj), t))

+Ji(f, f̄ )(x+tvi, t)(fj+f̄j)(x+tvi+yn(vi, vj), t)

+|fi − f̄i | (x+tvi, t)(Q+
j (f, f )+Q+

j (f̄, f̄ ))(x+tvi+yn(vi, vj), t).
(3.14)
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We integrate ; 1 [ i ] j [ N (3.14) over Rn × [0, .) in (x, y) to get

dDd(t)
dt

[ −vgLd(f, f̄ )(t)

+BgN(N−1) 5sup
x

F
.

0
(fj+f̄j)(x+tvi+yn(vi, vj), t) dy6Ld(f, f̄ )

+ C
1 [ i ] j [ N

F
R

n
F

.

0
|fi −f̄i| (x+vit, t)

· (Q+
j (f, f )+Q+

j (f̄, f̄ ))(x+tvi+yn(vi, vj), t)] dy dx

[ −
vg

2
Ld(f, f̄ )+ C

1 [ i ] j [ N
F

R
n

F
.

0
|fi −f̄i| (x+tvi, t)

· (Q+
j (f, f )+Q+

j (f̄, f̄ ))(x+tvi+yn(vi, vj), t)] dy dx,

where we used

sup
x

F
.

0
(fj+f̄j)(x+tvi+yn(vi, vj), t) dy [ (1+C3g) ||f0 ||E.

This completes the proof. L

Proof of Theorem 1.2. By the definition of H and Lemma 3.2, we
have

dH(t)
dt

[ 1BgN −
Kvg

2
2 Ld(f, f̄ )(t)+K C

1 [ i ] j [ N
F

R
n

F
.

0
|fi − f̄i | (x+tvi, t)

· [(Q+
j (f, f )+Q+

j (f̄, f̄ ))(x+tvi+yn(vi, vj), t)] dy dx.

We choose K large enough so that

BgN −
Kvg

2
< 0.

Then for such K, we have

dH(t)
dt

+C1Ld(f, f̄ )(t)

[ K C
1 [ i ] j [ N

F
R

n
F

.

0
|fi − f̄i | (x+vit, t)

· [(Q+
j (f, f )+Q+

j (f̄, f̄ ))(x+tvi+yn(vi, vj), t)] dy dx,
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where C1 is a positive constant and the summation is over all pairs (i, j)
with i ] j. We integrate the above inequality from t=0 to t=T to get

H(T)+C1 F
T

0
Ld(f, f̄ )(t) dt

[ H(0)+K C
1 [ i ] j [ N

F
T

0
F

R
n

F
.

0
|fi − f̄i | (x+tvi, t)

· [(Q+
j (f, f )+Q+

j (f̄, f̄ ))(x+tvi+yn(vi, vj), t)] dy dx dt. (3.15)

We denote the second term of the right-hand side of (3.15) by S(t).
We claim:

S(t)=O(g2) ||f0 − f̄0 ||L1.

For a point P ¥ P — Rn × R, we set

Ni(P) — the intersection point between a backward characteristic line

with velocity −Vi=(−vi, −1) issued from P and a hyperplane

Rn × {s=0},

Ni(P) P — the section of a characteristic line with velocity Vi connecting

Ni(P) and P,

l̂(N, Vi, t) — the section of a characteristic line issued from N with velocity Vi

in the time zone Rn × [0, t],

lij(P, y) — P+yn(vi, vj), y \ 0, l+
ij (P) — {lij(P, y): y \ 0}.

In the sequel, we sometimes drop the P-dependence in Ni(P), i.e.,

Ni(P)=Ni.

We integrate (3.13) along the characteristic line NiP to get

|fi − f̄i | (P) [ |f0i − f̄0i | (Ni)+F
Ri ¥ NiP

Ji(f, f̄ )(Ri) dRi. (3.16)
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We substitute (3.16) into S(t) to get

S(t) — C
1 [ i ] j [ N

F
P ¥ P 5 (R

n × [0, t])
|fi − f̄i | (P)

×5F
.

0
Q+

j (f, f )(lij(P, y)) dy6 dn+1P

[ C
1 [ i ] j [ N

F
P ¥ P 5 (R

n × [0, t])
F

.

0
|f0i − f̄0i | (Ni)(Q+

j (f, f )+Q+
j (f̄, f̄ ))

× (lij(P, y)) dy dn+1P

+ C
1 [ i ] j [ N

F
P ¥ P 5 (R

n × [0, t])
F

Ri ¥ NiP
F

.

0
Ji(f, f̄ )(Ri)(Q+

j (f, f )

+Q+
j (f̄, f̄ ))(lij(P, y)) dy dRi dn+1P. (3.17)

In order to estimate (3.17), it suffices to consider the following two types of
space-time integrals:

II1
ij(t) — F

P ¥ P 5 (R
n × [0, t])

|f0i − f̄0i | (Ni) 5F
.

0
Q+

j (f, f )(lij(P, y)) dy6 dn+1P

II2
ij(t) — F

P ¥ P 5 (R
n × [0, t])

F
Ri ¥ NiP

Ji(f, f̄ )(Ri)

×5F
.

0
Q+

j (f, f )(lij(P, y)) dy6 dRi dn+1P.

Before we estimate II1
ij(t) and II2

ij(t), we note that for a fixed point N ¥ Rn

and t, the plane P̄(t) defined by

P̄(t)=: {R̂i+lij(R̂i, y) | R̂i ¥ l̂(N, Vi, t), y \ 0}

is a part of the characteristic 2-plane spanned by Vi and Vj, i.e.,

Claim. Vi, and Vj are parallel to P̄(t).

Proof of the Claim. We first notice that the vectors R̂i and lij(R̂i, y)
can be written as follows:

R̂i=N+kVi, lij(R̂i, y)=R̂i+
y(Vj − Vi)
|Vj − Vi |

,

for some constants k, y \ 0.
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This yields

R̂i+lij(R̂i, y)=N+1k −
y

|Vj − Vi |
2 Vi+1 y

|Vj − Vi |
2 Vj.

Hence characteristic vectors Vi and Vj are parallel to P̄(t).
Next we estimate II1

ij(t) and II2
ij(t) as follows:

II1
ij(t)=F

N ¥ R
n

F
R̂i ¥ l̂(N, Vi, t)

|f0i − f̄0i | (Ni(R̂i)) 5F
.

0
Q+

j (f, f )(lij(R̂i, y)) dy6

× dR̂i dnN

=F
N ¥ R

n
|f0i − f̄0i | (N) 5F

R̂i ¥ l̂(N, Vi, t)
F

.

0
Q+

j (f, f )(lij(R̂i, y)) dy dR̂i
6

× dnN

[ N+
g M2(f(t)) ||f0i − f̄0i ||L1,

where Ng is the maximal size of Li defined in Section 1 and we used

Ni(R̂i)=N, R̂i ¥ l̂(N, Vi, t).

Similarly, we have

II2
ij(t)=F

N ¥ R
n

F
R̂i ¥ l̂(N, Vi, t)

F
Ri ¥ NR̂i

Ji(f, f̄ )(Ri)

×1F
.

0
Q+

j (f, f )(lij(R̂i, y)) dy2 dRi dR̂i dnN

[ F
N ¥ R

n
5F

Ri ¥ l̂(N, Vi, t)
Ji(f, f̄ )(Ri) dRi

6

×5F
R̂i ¥ l̂(N, Vi, t)

F
.

0
Q+

j (f, f )(lij(R̂i, y)) dy dR̂i
6 dnN

[ NgN+
g M2(f(t)) Mn+1(f(t), f̄(t)).

Here we used

F
Ri ¥ NR̂i

Ji(f, f̄ )(Ri) dRi [ F
R̂i ¥ l̂(N, Vi, t)

Ji(f, f̄ ) dR̂i for R̂i ¥ l̂(N, Vi, t).
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In (3.17), we use Propositions 2.1 and 2.2 to obtain

S(t) [ (N − 1) N+
g (M2(f(t))+M2(f̄(t))) ||f0 − f̄0 ||L1

+N(N − 1) NgN+
g (M2(f(t))+M̄2(f̄(t))) Mn+1(f(t), f̄(t))

[ C2(N − 1) N+
g Bg(||f0 ||2

E+||f̄0 ||2
E) ||f0 − f̄0 ||L1

+C2C4N(N − 1) NgN+
g B2

g(||f0 ||2
E+||f̄0 ||2

E)(||f0 ||E+||f̄0 ||E) ||f0 − f̄0 ||L1

=O(g2) ||f0 − f̄0 ||L1.

We combine the above estimates to obtain

H(t)+C1 F
t

0
Ld(f, f̄ )(s) ds [ H(0)+O(g2) L(0) [ C̄1H(0).

where C1 and C̄1 are positive constants independent of t and we used
L(0) [ H(0). This completes the proof. L

ACKNOWLEDGMENTS

The authors would like to thank Markos Katsoulakis, Tai-Ping Liu,
and Marshall Slemrod for their helpful advice and interest in this project.
The research of M. Feldman was supported in part by NSF Grant DMS-
0200644, and the research of S.-Y. Ha was partially supported by NSF
Grant DMS-0203858.

REFERENCES

1. J.-T. Beale, Large-time behavior of the Broadwell model of a discrete velocity gas,
Commun. Math. Phys. 102:217–235 (1985).

2. J.-T. Beale, Large-time behavior of discrete velocity Boltzmann equations, Commun.
Math. Phys. 106:659–678 (1986).

3. J.-M. Bony, Solutions globales bornées pour les modèles discrete de l’équation de Boltzmann
en dimension 1 d’espace, Actes Journées E.D.P. St. Jean de Monts, No. XVI (1987).

4. J.-M. Bony, Existence globale à données de Cauchy petites pour modèles discrets de
l’équation de Boltzmann, Commun. Par. Diff. Eq. 16:533–545 (1991).

5. J.-M. Bony, Existence Globale et Diffusion pour les Modèles Discrets de la Cinétique des
Gaz, First European Congress of Mathematics, Vol. 1 (1994), pp. 391–410.

6. A. Bressan, T.-P. Liu, and T. Yang, L1 stability estimates for n × n conservation laws,
Arch. Ration. Mech. An. 149:1–22 (1999).

7. J. E. Broadwell, Shock structure in a simple discrete velocity gas, Phys. Fluids 7:1243–1247
(1964).

8. C. Cercignani, A remarkable estimate for the solutions of the Boltzmann equation, Appl.
Math. Lett. 5:59–62 (1992).

9. C. Cercignani, Weak solutions of the Boltzmann equation and energy conservation, Appl.
Math. Lett. 8:53–59 (1995). See also: Errata, Appl. Math. Lett. 8:95–99 (1995).

1032 Feldman and Ha



10. C. Cercignani and R. Illner, Global weak solutions of the Boltzmann equation in a slab
with diffusive boundary conditions, Arch. Ration. Mech. An. 134:1–16 (1996).

11. P. B. Dubovski and S.-Y. Ha, Existence, uniqueness, and stability for spatially inhomo-
geneous Becker–Döring equations with diffusion and convection terms, submitted.

12. R. Gatignol, Théorie Cinétique des Gaz à Répartition Discrète de Vitesses, Lectures Notes
in Physics, Vol. 36 (Springer, Berlin, 1975).

13. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm.
Pure. Appl. Math. 18:697–715 (1965).

14. S.-Y. Ha, L1 stability of one-dimensional Boltzmann equation with an inelastic collision,
J. Differential Equations 190:621–642 (2003).

15. S.-Y. Ha, L1 stability of multi-dimensional discrete Boltzmann equations, to appear in
Arch. Ration. Mech. An.

16. S.-Y. Ha and A. E. Tzavaras, Lyapunov functionals and L1 stability of discrete Boltz-
mann equation, Commun. Math. Phys. 239:65–92 (2003).

17. R. Illner, Global existence results for discrete velocity models for the Boltzmann equation,
J. Meca. Th. Appl. 1:611–622 (1982).

18. R. Illner, Examples of nonbounded solutions in discrete kinetic theory, J. Méc. Théor.
Appl. 5:561–571 (1986).

19. R. Illner and T. Platkowski, Discrete velocity models of the Boltzmann equation:
A survey on the mathematical aspects of the theory, SIAM Review, 30:000–000 (1988).

20. K. Illner and M. Shinbrot, Global existence for a rare gas in an infinite vacuum, Commun.
Math. Phys. 95:217–226 (1984).

21. R. Illner and W. Wagner, A random discrete velocity model and approximation of the
Boltzmann equation, J. Stat. Phys. 70:773–792 (1993).

22. S. Kawashima, Global solution of the initial value problem for a discrete velocity model
of the Boltzmann equation, Proc. Japan Acad. 57:19–24 (1981).

23. S. Kawashima, Global Existence and Stability of Solutions for Discrete Velocity Models of
the Boltzmann Equation, Recent Topics in Nonlinear PDE (Hiroshima, 1983), North-
Holland Math Stud., Vol. 98 (North-Holland, Amsterdam, 1984), pp. 59–85.

24. T.-P. Liu and T. Yang, Well posedness theory for hyperbolic conservation laws, Comm.
Pure Appl. Math. 52:1553–1586 (1999).

25. T. Nishida and M. Mimura, On the Broadwell model of the Boltzmann equation for a
simple discrete velocity gas, Proc. Japan. Acad. 50:812–817 (1974).

26. M. Slemrod, Large time behavior of the Broadwell model of a discrete velocity gas with
specular reflective boundary conditions, Arch. Rational Mech. Anal. 111:323–342 (1990).

27. L. Tartar, Existence globale pour un système hyperbolique semi-linéaire de la théorie ciné-
tique des gaz, Séminaire Goulaouic–Schwartz, École Polytech., Palaiseau, No. 1 (1976).

28. L. Tartar, Some existence theorems for semilinear hyperbolic systems in one space variable,
MRC technical summary report (University of Wisconsin, 1980).

29. W. Wagner, Approximation of the Boltzmann equation by discrete velocity models,
J. Stat. Phys. 78:1555–1570 (1995).

Nonlinear Functionals of Multi-D Discrete Velocity Boltzmann Equations 1033


	1. INTRODUCTION
	2. PRELIMINARIES
	3. NONLINEAR FUNCTIONALS
	ACKNOWLEDGMENTS

